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Abstract

The purpose of the present work is to study the parametric instability of a three-layered, soft-cored, symmetric sandwich

beam subjected to a periodic axial load. Due to soft core, the displacements of the top and bottom skins are different and

hence, instead of using the classical theory a higher-order theory is used. Using extended Hamilton’s principle and taking

beam theory for the skins and a two-dimensional theory for the core, the governing equations of motion and boundary

conditions are derived. A generalized Galerkin’s method is used to reduce the equations of motion to a set of non-

dimensional coupled Mathieu–Hill’s equations with complex coefficients. The parametric instability regions for simple and

combination resonances are investigated for simply supported, clamped–guided, clamped–free riveted and clamped–free

end conditions by modified Hsu’s method. The influences of shear parameter; the core loss-factor and the ratio of core

thickness to skin thickness on the zones of instability have been studied. This general analysis can be applied to sandwich

beams with a flexible core and any type of construction. The results are compared with those reported for classical theories.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

To suppress vibration and noise in machines, automobiles, aircrafts, home appliances, etc. one may use
viscoelastic materials sandwiched between elastic layers. In these arrangements, energy is dissipated due to
cyclic deformation of the viscoelastic materials, which results in damping the vibration. Mainly the use of
multilayered structures with suitable arrangements of elastic and viscoelastic layers is gaining importance in
damping the vibrations of structures subjected to a wide range of excitation frequencies.

Most of the studies of sandwich structure [1–7] are devoted to the free vibration analysis without
considering the core to be flexible in transverse direction. In these cases, the governing equations of motion of
the sandwich structure are developed based on the classical principle or the anti-plane concept which implies
that the deflections of the upper and lower faces are equal and the longitudinal displacement distribution
throughout the height of the core is linear. The classical theory is no longer valid when one uses foam-like core
material [8] and hence a higher-order theory, which takes both the nonlinear displacement fields of the core
material and realistic supports into account should be used. Frostig and Baruch [9], Frostig [10], Bremen et al.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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[11], Sokolinsky et al. [12], Sokolinsky and Nutt [13], Frostig and Thomsen [14], Yang and Qiao [15] and Liu
and Zhao [16] studied sandwich beams with soft core using higher-order theory. In all these cases the study is
limited to free vibration analysis of the systems. One may refer Noor et al. [17], Sun and Lu [18] and
David [19] for a comprehensive knowledge of modeling, damping properties and applications of sandwich
structures.

In many applications these sandwich structures are subjected to parametric excitation. Unlike the forced
vibration in which the resonance occurs only when the excitation frequency is equal to one of the modal
frequencies, in case of parametric excitation, a small excitation can produce a large response when the
frequency of the excitation is close to twice the natural frequencies (principal parametric resonance) or
combination of different modal frequencies (combination resonances). A general description of the
parametrically excited system can be obtained in the texts by Nayfeh and Mook [20], Cartmell [21]. Some
of the literature considering parametric excitation on sandwich beam/columns includes those of Bauld [22],
Saito and Otomi [23], Chonan [24], Kar and Sujata [25], Ray and Kar [26,27]. In all these cases the dynamic
stability of sandwich structures have been studied and the parametric instability regions are plotted for
different system parameters. Saito and Otomi [23] modified Hsu [28] procedure to determine the stability of
viscoelastic beams with an attached mass and viscoelastic end supports under axial and tangential periodic
loads. Kar and Sujata [25] and Ray and Kar [26,27] obtained the parametric instability regions for simple and
combination resonances for different types of sandwich beams with viscoelastic core using the modified Hsu
procedure.

In all the above-mentioned works on parametric instability of sandwich beam, the core was not considered
to be flexible in the transverse direction and hence the anti-plane concept were used to model the sandwich
structure. To the best of the authors’ knowledge no work has been reported to study the stability of soft core
(which are flexible in transverse direction) sandwich beam subjected to parametric excitation. So in this work
an effort has been made to develop the governing equation of motion of such systems using higher-order
theory [9,10] and Hamilton’s principle, and then to obtain the parametric instability regions for different
system parameters. This study will be very much useful to the researcher/designer to suppress vibration using
soft-cored sandwich structures.
2. Formulation of the problem

Fig. 1 shows a simply supported, symmetric, three-layered sandwich beam of length L and width b

with a flexible soft core. The top, core and bottom layer thickness are dt, c and db, respectively. The upper and
lower layers (face layer) of the beam are of the same elastic material and the core is of soft viscoelastic
material. The sandwich beam is subjected to an axial periodic load P(t) ¼ P0+P1 cosot, o being the
frequency of the applied load, t being the time and P0 and P1 are the amplitudes of static and dynamic load,
respectively.

Fig. 2 shows the geometry of the sandwich beam, the load and internal forces and moments in different
layers and the deflection in x and z directions before and after deformations. Here, Qxx is the shear force, Nxx

is the axial force and Mxx is the bending moment. Superscripts t and b represent the top and bottom layer,
respectively. The assumptions made for deriving the governing equations are similar to that by Frostig [10]
and are (i) the face sheets of the sandwich beam are modeled as Euler–Bernoulli beams (ii) the transversely
Fig. 1. Symmetric three-layered sandwich beam with soft core.
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Fig. 2. (a) Geometry, (b) load, internal forces and moments (c) displacement pattern through depth of section. N.A is the neutral axis.
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flexible core layer is considered as a two-dimensional elastic medium with small deformations where
its height may change under loading, and its cross-section does not remain planar. The longitudinal
(in-plane) stresses in the core are neglected and (iii) the interface layers between the face sheets and
the core are assumed to be infinitely rigid and provide perfect continuity of the deformations at the
interfaces.

The internal potential energy (U) in terms of direct stresses (s) and shear stress t and strains (e, g) is given by

U ¼

Z
vtop

sxx�xx dvþ

Z
vbot

sxx�xx dvþ

Z
vcore

tcgc dvþ

Z
vcore

szz�zz dv, (1)

where vtop, vbot, and vcore are the volume of the top, bottom and core layer, respectively. One may note that, as
the core is taken to be flexible, deformation takes place in the transverse direction (z direction) and the last
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term of Eq. (1) takes care of that effect. The kinetic energy T can be given by

T ¼ ð1=2Þ

Z L

0

mtð _u
2
t þ _w2

t Þdxþ

Z L

0

mbð _u
2
b þ _w2

bÞdxþ

Z
vcore

rc _u
2
c dvþ

Z
vcore

rc _w
2
c dv

� �
. (2)

Here mt and mb are the mass per unit length of the top and bottom layer, respectively, and rc is the density
of the core material; ut and ub are the displacement at the neutral axis of the top and bottom layer along x

(longitudinal) direction, respectively; wt and wb are the displacement at top and bottom layer along z (vertical)
direction, respectively (Fig. 2(c)). Also, uc and wc are the displacement of the core along x and z directions,
respectively, and can be given by [9]

uc ¼ ut � ðdt=2Þwt;x þ
fub þ ðdb=2Þwb;x � ðut � ðdt=2Þwt;xÞgz

c
, (3a)

wc ¼ wt þ
ðwb � wtÞz

c
. (3b)

Here (),x represents the differentiation with respect to x and subscripts t, b, c represent top, bottom and core
layer, respectively.

The non-conservative work done due to the applied load can be given by

W nc ¼ ð1=2Þ

Z L

0

Pw2
t;xdxþ

Z L

0

Pw2
b;xdx

� �
. (4)

The following non-dimensional parameters are used in this analysis

P̄0 ¼ P0L
2=ð2EqIqÞ; P̄1 ¼ P1L2=ð2EqIqÞ; xc ¼ Gn

c AcL2=E; ft ¼ EtAtL
2=E; fb ¼ EbAbL2=E,

fc ¼ EcAcL2=E; g ¼ Gc=ðEtðc=dtÞðL=dtÞ
2
þ Ebðc=dbÞðL=dbÞ

2
Þ; t̄ ¼ t=t0; x̄ ¼ x=L,

ūq ¼ uq=L; w̄q ¼ wq=L; m̄q ¼ mq=m; m̄c ¼ mc=m. ð5Þ

Here, P̄0 and P̄1 are, respectively, the non-dimensional static and dynamic load amplitudes; Eq, Iq and Aq

are the Young’s modulus, moment of inertia and the area of cross-section of the qth layer (q equal to t for top
layer and b for bottom layer); E ¼ EtIt+EbIb; Ec, Ac and mc are the Young’s modulus, area of cross-section
and mass per unit length of the core, respectively. The non-dimensional time, t0 ¼ ðmL4=EÞð1=2Þ, where m is the
total mass per unit length. The complex shear modulus of the viscoelastic core is given by G�c ¼ Gcð1þ jZcÞ,
where Gc is the phase shear modulus, j ¼

ffiffiffiffiffiffiffi
�1
p

and Zc is the core loss factor. The non-dimensional term g is
known as the shear parameter of the system.

Using Eqs. (1)–(5), the governing non-dimensional equations of motion and the boundary conditions are
derived by applying the extended Hamilton’s principle. These resulting governing equations of motion are as
follows:

ðm̄t þ m̄c=3Þ €̄wt � ðm̄c=12Þðdt=cÞ2ðc=LÞ2 €̄wt;x̄x̄ þ ðm̄c=576Þðdt=cÞf1þ ðdt=cÞgðc=LÞ4ðxc=fcÞ
€̄wt;x̄x̄x̄x̄

þ ðm̄c=24Þðdt=cÞðdb=cÞðc=LÞ2 €̄wb;x̄x̄ þ ðm̄c=576Þðdb=cÞf1þ ðdt=cÞgðc=LÞ4ðxc=fcÞ
€̄wb;x̄x̄x̄x̄

þ ðm̄c=6Þ €̄wb þ ðm̄c=6Þðdt=cÞðc=LÞ €̄ut;x̄ � ð1=48Þðm̄t þ m̄c=6Þf1þ ðdt=cÞgðc=LÞ3ðxc=fcÞ
€̄ut;x̄x̄x̄

þ ðm̄c=12Þðdt=cÞðc=LÞ €̄ub;x̄ þ ð1=48Þðm̄b þ m̄c=6Þf1þ ðdt=cÞgðc=LÞ3ðxc=fcÞ
€̄ub;x̄x̄x̄

� fcðL=cÞ2w̄t � ðxc=4Þf1þ ðdt=cÞg2w̄t;x̄x̄ � fcðL=cÞ2w̄b � ðxc=4Þf1þ ðdt=cÞgf1þ ðdb=cÞgw̄b;x̄x̄

þ ðxc=2ÞðL=cÞf1þ ðdt=cÞgūt;x̄ þ ðxc=fcÞf1þ ðdt=cÞgðft=48Þðc=LÞ3ūt;x̄x̄x̄x̄x̄

� ðxc=2ÞðL=cÞf1þ ðdt=cÞgūb;x̄ � ðxc=fcÞf1þ ðdt=cÞgðfb=48Þðc=LÞ3ūb;x̄x̄x̄x̄x̄

þ ðft=12Þðdt=cÞ2ðc=LÞ2w̄t;x̄x̄x̄x̄ þ ðPL2=EÞw̄t;x̄x̄ ¼ 0, ð6Þ
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ðm̄c=6Þ €̄wt þ ðm̄c=24Þðdt=cÞðdb=cÞðc=LÞ2 €̄wt;x̄x̄ þ ðm̄c=576Þðdt=cÞf1þ ðdb=cÞgðc=LÞ4ðxc=fcÞ
€̄wt;x̄x̄x̄x̄

þ ðm̄b þ m̄c=3Þ €̄wb � ðm̄c=12Þðdt=cÞ2ðc=LÞ2 €̄wb;x̄x̄ þ ðm̄c=576Þðdb=cÞf1þ ðdb=cÞgðc=LÞ4ðxc=fcÞ
€̄wb;x̄x̄x̄x̄

� ðm̄c=12Þðdb=cÞðc=LÞ €̄ut;x̄ � ð1=48Þðm̄t þ m̄c=6Þf1þ ðdb=cÞgðc=LÞ3ðxc=fcÞ
€̄ut;x̄x̄x̄ � ðm̄c=6Þðdb=cÞðc=LÞ €̄ub;x̄

þ ð1=48Þðm̄b þ m̄c=6Þf1þ ðdb=cÞgðc=LÞ3ðxc=fcÞ
€̄ub;x̄x̄x̄ þ fcðL=cÞ2w̄b � ðxc=4Þf1þ ðdt=cÞgf1þ ðdb=cÞgw̄t;x̄x̄

� fcðL=cÞ2w̄t � ðxc=4Þf1þ ðdb=cÞg2w̄b;x̄x̄ þ ðxc=2ÞðL=cÞf1þ ðdb=cÞgūt;x̄

þ ðxc=fcÞf1þ ðdb=cÞgðft=48Þðc=LÞ3ūt;x̄x̄x̄x̄x̄ � ðxc=2ÞðL=cÞf1þ ðdb=cÞgūb;x̄

� ðxc=fcÞf1þ ðdb=cÞgðfb=48Þðc=LÞ3ūb;x̄x̄x̄x̄x̄ þ ðfb=12Þðdb=cÞ2ðc=LÞ2w̄b;x̄x̄x̄x̄ þ ðPL2=EÞw̄b;x̄x̄ ¼ 0, ð7Þ

ðm̄c=6Þðdt=cÞðc=LÞ €̄wt;x̄ � ðm̄c=288Þðdt=cÞðc=LÞ3ðxc=fcÞ
€̄wt;x̄x̄x̄

� ðm̄c=12Þðdb=cÞðc=LÞ €̄wb;x̄ � ðm̄c=288Þðdb=cÞðc=LÞ3ðxc=fcÞ
€̄wb;x̄x̄x̄

þ ð1=24Þðm̄t þ m̄c=6Þðc=LÞ2ðxc=fcÞ
€̄ut;x̄x̄ � ðm̄t þ m̄c=3Þ €̄ut

� ð1=24Þðm̄b þ m̄c=6Þðc=LÞ2ðxc=fcÞ
€̄ub;x̄x̄ � ðm̄c=6Þ €̄ub þ ðxc=2Þf1þ ðdt=cÞgðL=cÞw̄t;x̄

þ ðxc=2ÞðL=cÞf1þ ðdb=cÞgw̄b;x̄ þ ftūt;x̄x̄ � ðL=cÞ2xcūt � ðxc=fcÞðft=24Þðc=LÞ2ūt;x̄x̄x̄x̄

þ ðL=cÞ2xcūb þ ðxc=fcÞðfb=24Þðc=LÞ2ūb;x̄x̄x̄x̄ ¼ 0, ð8Þ

ðm̄c=12Þðdt=cÞðc=LÞ €̄wt;x̄ þ ðm̄c=288Þðdt=cÞðc=LÞ3ðxc=fcÞ
€̄wt;x̄x̄x̄

� ðm̄c=6Þðdb=cÞðc=LÞ €̄wb;x̄ þ ðm̄c=288Þðdb=cÞðc=LÞ3ðxc=fcÞ
€̄wb;x̄x̄x̄

� ðm̄c=6Þ €̄ut � ð1=24Þðm̄t þ m̄c=6Þðc=LÞ2ðxc=fcÞ
€̄ut;x̄x̄ � ðm̄b þ m̄c=3Þ €̄ub

þ ð1=24Þðm̄b þ m̄c=6Þðc=LÞ2ðxc=fcÞ
€̄ub;x̄x̄ � ðxc=2Þf1þ ðdt=cÞgðL=cÞw̄t;x̄

� ðxc=2ÞðL=cÞf1þ ðdb=cÞgw̄b;x̄ þ ðL=cÞ2xcūt þ ðxc=fcÞðft=24Þðc=LÞ2ūt;x̄x̄x̄x̄

þ fbūb;x̄x̄ � ðL=cÞ2xcūb � ðxc=fcÞðfb=24Þðc=LÞ2ūb;x̄x̄x̄x̄ ¼ 0. ð9Þ

3. Approximate solution

As the above equations of motion (6)–(9) are in space and time coordinates, generalized Galerkin’s principle
is used to reduce these equations to their temporal form. For multimode discretization one may take

w̄t ¼
XN

p¼1

f pðt̄Þwpðx̄Þ; w̄b ¼
X2N

q¼Nþ1

f qðt̄Þwqðx̄Þ; ūt ¼
X3N

r¼2Nþ1

f rðt̄Þurðx̄Þ; ūb ¼
X4N

s¼3Nþ1

f sðt̄Þusðx̄Þ. (10)

Here, N is a positive integer representing the number of modes taken in the analysis and
f pðt̄Þ; f qðt̄Þ; f rðt̄Þ; and f sðt̄Þ are the generalized coordinates and wpðx̄Þ; wqðx̄Þ; urðx̄Þ and usðx̄Þ are the shape
functions chosen to satisfy as many as the boundary conditions. The resulting equation of motion becomes

½M�f €f g þ ½K �ff g � P̄1 cos ōt̄½H�ff g ¼ ffg. (11)

Here, ð�Þ ¼ dð Þ=dt̄, ff g ¼ fff pg
Tff qg

Tff rg
Tff sg

TgT; and ½K � ¼ ½K1� � P̄0½H�,

where

½M� ¼

½M11� ½M12� ½M13� ½M14�

½M21� ½M22� ½M23� ½M24�

½M31� ½M32� ½M33� ½M34�

½M41� ½M42� ½M43� ½M44�

2
666664

3
777775; ½K1� ¼

½K11� ½K12� ½K13� ½K14�

½K21� ½K22� ½K23� ½K24�

½K31� ½K32� ½K33� ½K34�

½K41� ½K42� ½K43� ½K44�

2
666664

3
777775,
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H½ � ¼

½H11� ½f� ½f� ½f�

½f� ½H22� ½f� ½f�

½f� ½f� ½f� ½f�

½f� ½f� ½f� ½f�

2
666664

3
777775; ffg and ½f� are null matrices:

The elements of the various sub matrices are given in the Appendix.
Eq. (11) is a set of coupled Mathieu–Hill equations with complex coefficients. In the absence of any external

forcing, these equations reduce to those of Frostig and Baruch [9] where only the free-vibration study has been
made. Also this equation is similar in form (but coefficients are different) to that obtained by Ray and Kar
[26]. It may be noted that, Ray and Kar [26] have not considered the core to be flexible in transverse direction
and hence used classical theory. For numerical calculations following shape functions are considered.

For simply supported beam

wpðx̄Þ ¼ sinðppx̄Þ; wqðx̄Þ ¼ sinðq̄px̄Þ; urðx̄Þ ¼ cosðr̄px̄Þ and usðx̄Þ ¼ cosðs̄px̄Þ. (12)

These shape functions satisfy all the boundary conditions. Here p ¼ 1; 2; . . . ;N, q̄ ¼ ðq�NÞ; r̄ ¼ ðr� 2NÞ

and s̄ ¼ ðs� 3NÞ.
The following shape functions are used for clamped–guided beam [26].

wiðx̄Þ ¼ ði þ 3Þði þ 2Þði þ 1Þf2þ ð2� m1Þigx̄
ðiþ1Þ � ½2ði þ 3Þði þ 1Þ2f1þ ð2� m1Þig

þ m1fði þ 1Þ=f2ði þ 2Þ þ ð2� m1Þði þ 2Þi�x̄ðiþ2Þ

þ ½ði þ 2Þði þ 1Þ2ið2� m1Þ � m1iði þ 1Þ=f2ði þ 3Þ þ ð2� m1Þði þ 3Þig�x̄ðiþ3Þ, ð13aÞ

uk̄ðx̄Þ ¼ ðk̄ þ 1Þx̄k̄ � ½2ðk̄ þ 3Þðk̄ þ 2Þðk̄ þ 1Þ þ k̄f1þ m1=ð2þ 2k̄ � m1k̄Þg�x̄ðk̄þ1Þ, (13b)

where i ¼ p for top layer and equal to q�N for bottom layer and k̄ equal to r�2N for top layer and s�3N for
bottom layer. m1 ¼ Y/(1+Y) where, Y ¼ 3(1+(c/dt)

2), and m2 ¼ P̄0=ð1þ Y Þ.
For clamped–free riveted beam, the shape functions can be given by [26]

wiðx̄Þ ¼ ði þ 3Þði þ 2Þfði þ 2Þði þ 1Þ � m2gx̄
ðiþ1Þ þ ½2ði þ 3Þði þ 1Þfm2 � iði þ 2Þg

þ m1fði � 1Þði þ 2Þ � m2g=fði þ 2Þ2ði þ 1Þ � m2ði þ 2Þg�x̄ðiþ2Þ

þ ½ði þ 2Þði þ 1Þf�m2 þ iði þ 1Þg � m1fiði þ 1Þ � m2g=fði þ 3Þði þ 2Þði þ 1Þ � ði þ 3Þm2g�x̄
ðiþ3Þ, ð14aÞ

uk̄ðx̄Þ ¼ ðk̄ þ 1Þ½x̄k̄ � x̄ðk̄þ1Þ�. (14b)

Here i and k̄ are same as defined for the clamped–guided beam. For clamped–free beam, the shape functions
are as follows [26]:

wiðx̄Þ ¼ ði þ 3Þði þ 2Þfði þ 2Þði þ 1Þ � m2gx̄
ðiþ1Þ þ ½2ði þ 3Þði þ 1Þfm2 � iði þ 2Þgm1iði þ 1Þ=fði þ 2Þði þ 1Þ � m2g�

þ ½ði þ 2Þði þ 1Þf�m2 þ iði þ 1Þg � m1iði þ 1Þ2=fði þ 3Þði þ 2Þði þ 1Þ � ði þ 3Þm2gx̄
ðiþ3Þ, ð15aÞ

ukðx̄Þ ¼ ðk̄ þ 1Þx̄k̄ � k̄x̄ðk̄þ1Þ. (15b)

Here i and k̄ are same as the previous boundary conditions.
If [L] is a normalized modal matrix of ½M��1½K�; then the linear transformation

ff g ¼ ½L�fUg, (16)

transforms Eq. (11) to

€Uq þ ðo�qÞ
2Uq þ 2� cos ōt̄

X4N

p¼1

b�qpUp ¼ 0; q ¼ 1; . . . ; 4N, (17)

where ðo�qÞ
2 are the distinct eigenvalues of ½M��1½K� and b�qp are the elements of ½B� ¼ �½L��1½M��1½H�½L�.

Also, � ¼ P̄1=2o1 for the present analysis. The complex frequency and forcing parameters in terms of real and
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imaginary parts are given by

o�q ¼ oq;R þ joq;I ,

b�qp ¼ bqp;R þ jbqp;I . ð18Þ

4. Regions of instability

The boundaries of the regions of instability for simple and combination resonances are obtained by the
modified Hsu’s [23] method. When the system is excited at a frequency nearly equal to twice the natural
frequencies principal parametric resonance and when it is excited near a frequency, which is equal to the sum
or differences of any two modal frequencies combination resonances of sum or difference types take place.
Following relations are used to obtain the boundaries of the regions of instability for simple and combination
resonances [27].

(1) Simple resonance case

jðō=2Þ � oa;Rjo1
4
wa; a ¼ 1; 2; . . . ; 4N, (19)

where

wa ¼
4�2ðb2

aa;R þ b2
aa;I Þ

o2
a;R

� 16o2
a;I

" #1=2
. (20)

(2) Combination resonance of sum type

jō� ðoa;R þ ob;RÞjowab, (21)

when damping is present

wab ¼
ðoa;I þ ob;I Þ

4ðoa;Iob;I Þ
1=2

4�2ðbab;Rbba;R þ bab;I bba;I Þ

oa;Rob;R
� 16oa;Iob;I

� �1=2
(22)

and for the undamped case

wab ¼ �
bab;Rbba;R

oa;Rob;R

� �1=2
; aab; a;b ¼ 1; 2; . . . ; 4N. (23)

(3) Combination resonance of difference type

jō� ðob;R � oa;RÞjoLab; a4b; a;b ¼ 1; 2; . . . ; 4N (24)

when damping is present

Lab ¼
ðoa;I þ ob;I Þ

4ðoa;Iob;I Þ
1=2

4�2ðbab;I bba;I � bab;Rbba;RÞ

oa;Rob;R
� 16oa;Iob;I

� �1=2
(25)

and for the undamped case

Lab ¼ � �
bab;Rbba;R

oa;Rob;R

� �1=2
. (26)

5. Results and discussions

Here the parametric instability regions of a three-layered symmetric sandwich beam with simply supported,
clamped–guided, clamped–free riveted and clamped–free boundary conditions have been determined
numerically using MATLAB, version 6.0, R12. For visco-elastic materials, core loss factor (Zc) is a measure
of energy dissipation capacity and the shear parameter g ¼ Gc=ð2Etðc=dtÞðL=dtÞ

2
Þ is a measure of stiffness of

the material and is important in determining how much energy gets into the visco-elastic material. So these
two parameters are varied in determining the instability regions for the parametrically excited beams. Also the
effects of core and skin thickness on the instability regions are studied for all these boundary conditions. In the
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parametric instability regions shown in the following figures, the regions enclosed by the curves are unstable
and the regions outside the curves are stable. Here the ordinate P̄1 is the amplitude of non-dimensional
dynamic load and the abscissa ō is the non-dimensional forcing frequency. Following physical parameters are
taken for the numerical analysis. The span of the beam, L ¼ 300 cm, width, b ¼ 50mm, the top and bottom
face thickness dt ¼ db ¼ 2mm and the core thickness, c ¼ 30mm. The non-dimensional static load amplitude
P̄0 ¼ 0:1 for all the figures except for Figs. 3, 8, 13 and 18 where it is taken to be 0.5. The top and bottom faces
are of steel and the core is of soft plastic foam (Divinycell H60). The mechanical properties of steel and
Divinycell H60 are given in Table 1 [11]. The instability regions with different boundary conditions are
discussed in the following subsections. Unless otherwise specified, the figures are plotted using higher-order
theory.
5.1. Simply supported beam

Using the shape functions given in Eq. (12) the instability regions for the simply supported beam are
determined and shown in Figs. 3–6 for the first three modes. Fig. 3 shows the parametric instability regions
obtained using both the higher-order theory and classical theory [26] for simple resonances. One may observe
that for all the three modes, the region of instability starts at a lower frequency for higher-order theory in
comparison to the classical theory, which is due to the fact that, the core is considered to be more flexible in
higher-order theory than in case of classical theory. Also, it is clearly observed from these figures that the
instability region is wider in case of higher-order theory as compared to the classical theory. With change in P̄0

(say P̄0 ¼ 0:1), while instability region with higher-order theory remains almost unchanged, it is observed that
for lower value of P̄1, the instability regions with classical theory shifts towards left.

Figs. 4–6 show the influence of core loss factor (Zc) and the shear parameter (g) upon the instability region
obtained by using higher-order theory. It is clearly observed that increase in core loss factor improves the
stability by shifting the instability zones upwards and reducing the area of instability, which is similar to those,
obtained by classical theory. It is also observed that with increase in shear parameter stability of the system
improves. From the above figures it is clearly understood that to obtain a more stable system one may go for
higher value of core loss factor (Zc) and shear parameter (g).

Fig. 7 shows the effect of the ratio of the core thickness to skin thickness (c/dt) on parametric instability
regions for Zc ¼ 0.1; g ¼ 0.05. It may be observed that, with increase in c/dt, though the area of instability
regions remain almost same, the instability regions move towards left, indicating that the system will become
unstable at a lower frequency and forcing amplitude in all the three modes. This is due to the fact that, increase
in c/dt, will give rise to increase in mass (if c is increased) or decrease in stiffness (if dt is decreased) of the
system. In both the cases the natural frequencies of the system will decrease and hence the parametric
instability region will start at a lower frequency ðōÞ. It may be noted that, as a symmetric sandwich beam is
considered in this work, variation of c/dt and c/db will have the same effect.
Fig. 3. Comparison of instability regions using higher-order and classical theories, P̄0 ¼ 0:5; Zc ¼ 0:1; g ¼ 0.05; ——, higher-order

theory; - - - - -, classical theory.
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Table 1

Material properties of sandwich beam

Material Young’s modulus E (Gpa) Shear modulus G (Gpa) Poisson’s ratio (n) Density r (kg/m3)

Steel 210 81 0.3 7900

Divinycell H60 0.056 0.022 0.27 60

Fig. 4. Effect of shear parameter on instability regions for Zc ¼ 0.0; ——, g ¼ 0.05; - - - - -, g ¼ 0.1; ++++, g ¼ 0.5.

Fig. 5. Effect of shear parameter on instability regions for Zc ¼ 0.18; ——, g ¼ 0.05; - - - - -, g ¼ 0.1; ++++, g ¼ 0.5.

Fig. 6. Effect of shear parameter on instability regions for Zc ¼ 0.3; ——, g ¼ 0.05; - - - - -, g ¼ 0.1; ++++, g ¼ 0.5.

S.K. Dwivedy et al. / Journal of Sound and Vibration 304 (2007) 326–344334
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Fig. 7. Effect of the ratio of core thickness to skin thickness (c/dt) on instability regions for Zc ¼ 0.1, g ¼ 0.05; ——, c/dt ¼ 2; - - - - -, c/

dt ¼ 5; – � – � – � – � , c/dt ¼ 15.

Fig. 8. Comparison of instability regions using higher-order and classical theories for P̄0 ¼ 0:5; Zc ¼ 0:1, g ¼ 0.05; ——, higher-order

theory; - - - - -, classical theory.
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Comparing Figs. 3 and 7, it may be observed that with increase in the non-dimensional static force
parameter ðP̄0Þ, the instability region of the system becomes wider and it starts at a lower frequency.
5.2. Clamped-guided beam

By taking same system parameters as stated before and the shape functions as given in Eq. (13), the
instability regions for the clamped–guided beam are determined and shown in Figs. 8–12 for the first three
modes.

In Fig. 8, the parametric instability regions obtained using both higher-order theory and classical theory [26]
are compared for simple resonances. Except for higher modes and very low value of P̄1, it may be observed
that, higher-order theory will give conservative design parameters for sandwich beam construction. The effect
of core loss factor and shear parameter on instability regions are shown in Figs. 9–11. Similar to the previous
case, the stability of the system improves with increase in core loss factor and shear parameter. Here the
instability region is smaller than that of the previous boundary condition.

Similar to the previous boundary condition, for the same length, core-loss factor and shear parameter, with
increase in c/dt, the instability regions occur at a lower frequency and amplitude of forcing (Fig. 12). One may
clearly observe from Figs. 12 and 8 that with increase in P̄0, parametric instability region starts at a lower
frequency. This can be explained from the expression for stiffness matrix [K] (Eq. (11)), which shows that
stiffness decreases with increase in P̄0 and hence the instability region starts at a lower frequency for higher
value of P̄0.
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Fig. 9. Effect of shear parameter on instability regions for Zc ¼ 0; ——, g ¼ 0.05; - - - - -, g ¼ 0.1; ++++, g ¼ 0.5.

Fig. 10. Effect of shear parameter on instability regions for Zc ¼ 0.18; ——, g ¼ 0.05; - - - - -, g ¼ 0.1; ++++, g ¼ 0.5.

Fig. 11. Effect of shear parameter on instability regions for Zc ¼ 0.3; ——, g ¼ 0.05; - - - - -, g ¼ 0.1; ++++, g ¼ 0.5.

S.K. Dwivedy et al. / Journal of Sound and Vibration 304 (2007) 326–344336
5.3. Clamped– free riveted beam

The instability regions for the first three modes of a clamped–free riveted beam are shown in Figs. 13–17.
Here in Fig. 13, the parametric instability regions obtained by both the higher-order theory and classical
theory [26] are compared.
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It may be observed that by analyzing a soft-cored sandwich beam by classical theory will yield erroneous
result as the actual system response may be unstable, e.g., point A on Fig. 13, is stable considering classical
theory, but unstable considering higher-order theory. But in third mode, point B is stable considering higher-
order theory, but unstable considering classical theory. Hence, except for higher modes and for very low
forcing amplitude, one may obtain a safer design by considering higher-order theory.

Here, the non-dimensional forcing frequency at which the instability region starts is less than those obtained
by considering the previous two boundary conditions. Also it may be observed that the instability region in
this case is more than those for the simply supported and clamped–guided cases.
Fig. 12. Effect of the ratio of core thickness to skin thickness (c/dt) on instability regions for Zc ¼ 0.1, g ¼ 0.05; ——, c/dt ¼ 2; – – – –, c/

dt ¼ 5; – � – � – � – � , c/dt ¼ 15.

Fig. 13. Comparison of instability regions using higher-order and classical theories for P̄0 ¼ 0:5; Zc ¼ 0:1, g ¼ 0.05; ——, higher-order

theory; - - - - -, classical theory.

Fig. 14. Effect of shear parameter on instability regions for Zc ¼ 0; ——, g ¼ 0.05; - - - - -, g ¼ 0.1; ++++, g ¼ 0.5.
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Fig. 15. Effect of shear parameter on instability regions for Zc ¼ 0.18; ——, g ¼ 0.05; - - - - -, g ¼ 0.1; ++++, g ¼ 0.5.

Fig. 16. Effect of shear parameter on instability regions for Zc ¼ 0.3; ——, g ¼ 0.05; - - - - -, g ¼ 0.1; ++++, g ¼ 0.5.

Fig. 17. Effect of the ratio of core thickness to skin thickness (c/dt) on instability regions for Zc ¼ 0.1, g ¼ 0.05; ——, c/dt ¼ 2; – – – –, c/

dt ¼ 5; – � – � – � – � , c/dt ¼ 15.
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Figs. 14–16 show the influence of core loss factor (Zc) and the shear parameter (g) upon the instability region
and one may note that for the same Zc and g, the stability region in this case is more improved than the
previous two boundary conditions.

Similar to the previous two cases, in this case also increase in c/dt ratio (Fig. 17) moves the instability regions
towards left. Further, due to this clamped–free riveted boundary condition, the instability regions occur at a
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lower frequency in comparison to the previous two cases. From Figs. 13 and 17, one may observe the shifting
of the parametric instability region towards right with increase in the static force amplitude.
5.4. Clamped– free beam

Using the shape functions (Eq. (15)) for the clamped–free beam, the instability regions for the first three
modes are determined and shown in Figs. 18–22.

Using higher-order theory and classical theory the parametric instability regions for simple resonances are
shown in Fig. 18. Here also, higher-order theory gives a conservative design for lower modes. In this case, the
non-dimensional forcing frequency at which the instability region starts is the lowest among all the boundary
conditions, which are discussed here. It may also be observed that the instability region for this case is more in
comparison to simply supported and clamped-guided boundary conditions. The variation in instability
regions for clamped–free riveted and this case is almost negligible.

Figs. 19–21 show the influence of core loss factor (Zc) and the shear parameter (g) upon the instability region
and it is observed that with increase in core loss factor and shear parameter stability of the system improves.

Fig. 22 shows the parametric instability regions for a cantilevered sandwich beam for different values of c/dt

ratio and one may obtain similar observations as in the previous boundary conditions.
For all the boundary conditions the system is always found to be stable at combination resonances of sum

and difference type. In these cases, for simple resonances it is observed that with increase in shear parameter
the instability plot moves upward implying that there exists critical forcing amplitude below which the system
Fig. 18. Comparison of instability regions using higher-order and classical theories for P̄0 ¼ 0:5; Zc ¼ 0:1, g ¼ 0.05; ——, higher-order

theory; - - - - -, classical theory.

Fig. 19. Effect of shear parameter on instability regions for Zc ¼ 0; ——, g ¼ 0.05; - - - - -, g ¼ 0.1; ++++, g ¼ 0.5.
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Fig. 20. Effect of shear parameter on instability regions for Zc ¼ 0.18; ——, g ¼ 0.05; - - - - -, g ¼ 0.1; ++++, g ¼ 0.5.

Fig. 21. Effect of shear parameter on instability regions for Zc ¼ 0.3; ——, g ¼ 0.05; - - - - -, g ¼ 0.1; ++++, g ¼ 0.5.

Fig. 22. Effect of the ratio of core thickness to skin thickness (c/dt) on instability regions for Zc ¼ 0.1, g ¼ 0.05; ——, c/dt ¼ 2; – – – –, c/

dt ¼ 5; – � – � – � – � , c/dt ¼ 15.
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is always stable. For example, when a cantilevered sandwich beam with Zc ¼ 0.3 and g ¼ 0.1 is excited near
twice the first natural frequency ō ¼ 8:2; the system will not vibrate if the forcing amplitude is less than 0.485
(point Pc on Fig. 21). But for the same Zc and g ¼ 0.05, with same amplitude of forcing, the system will vibrate
at a slightly less frequency (say ō ¼ 7:8). Again with increase in shear parameter, the instability region shifts
towards right and hence, for same forcing amplitude, the system becomes unstable at a higher frequency. As
the shear parameter g ¼ Gc=ð2Etðc=dtÞðL=dtÞ

2
Þ, is a function of dimension and material properties of both skin

and core material, using the above stability charts, a designer will be able to construct sandwich beams having
very less or vibration free structures.
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6. Conclusions

The analysis for finding the parametric instability regions of a three-layered, symmetric sandwich beam with
soft viscoelastic core, subjected to periodic axial end load is presented using higher-order theory. The results of
the classical theory are also determined for comparison purpose. In this work, the parametric instability
regions with simple and combination resonances for simply supported, clamped–guided, clamped–free riveted
and clamped–free end conditions are investigated. In all these cases, the modal frequencies obtained by using
higher-order theory are found to be lower than those obtained by using classical theory. Also, wide instability
regions are observed using the higher-order theory in comparison to those obtained by classical theory. It is
noticed that use of classical theory for soft-cored sandwich beam will give erroneous result and except at very
low amplitude of forcing and higher modes, one will obtain a very safe design using higher-order theory.
Hence, it is recommended to use higher-order theory for soft-cored sandwich beam to find the instability
regions.

For all the considered boundary conditions, it is observed that by increasing the core loss factor (Zc) and/or
shear parameter (g) improve the stability of the system as the instability region moves upwards and shifts
towards right. For the same length, core-loss factor and shear parameter, with increase in the ratio of core
thickness to skin thickness, the instability regions occur at a lower frequency and amplitude of forcing. Also it
is observed that with decrease in static amplitude of forcing P̄0, the instability region starts at a higher
frequency. The effect of c/dt on the parametric instability regions is also studied for all the boundary
conditions and it is observed that lower value of c/dt improves the stability of the system. In all the cases
instability charts are plotted for a wide range of system parameters.

By using the parametric instability region charts, it will be easier for the designer to choose dimension,
material of the sandwich beam and the operating frequency and amplitude of forcing parameters to avoid
unnecessary vibration of the system. This analysis is general and can be applied to sandwich beams with any
type of construction and a flexible core.
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� fðL=cÞ2xcg

Z 1

0

uiujdx̄

� �
� fð1=24Þðc=LÞ2ðxc=fcÞftg

Z 1

0

u00i u00j dx̄

� �
,

ðK34Þij ¼ fðL=cÞ2xcg

Z 1

0

uiuj dx̄

� �
þ fð1=24Þðc=LÞ2ðxc=fcÞfbg

Z 1

0

u00i u00j dx̄

� �
,

ðK41Þij ¼ fð1=2ÞðL=cÞð1þ dt=cÞxcg

Z 1

0

u0iwj dx̄

� �
,

ðK42Þij ¼ fð1=2ÞðL=cÞð1þ db=cÞxcg

Z 1

0

u0iwj dx̄

� �
,

ðK43Þij ¼ fðL=cÞ2xcg

Z 1

0

uiuj dx̄

� �
þ fð1=24Þðc=LÞ2ðxc=fcÞftg

Z 1

0

u00i u00j dx̄

� �
,

ðK44Þij ¼ ð�fbÞ

Z 1

0

u0iu
0
j dx̄

� �
� fðL=cÞ2xcg

Z 1

0

uiujdx̄

� �
� fð1=24Þðc=LÞ2ðxc=fcÞfbg

Z 1

0

u00i u00j dx̄

� �
,

ðHÞ11 ¼

Z 1

0

w0iw
0
j dx̄,

ðHÞ22 ¼

Z 1

0

w0iw
0
j dx̄,
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In the above relations, ð Þ0 ¼ qð Þ=qx̄; and the sub-matrices, which are not covered by the above elements,
should be treated as null.
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